

Python meteorological post-processing system

The python meteorological post-processing system could be used to post-process
meteorological data. The main purpose of this project is the post-processing of
numerical weather forecast data. This package has some modules to load and
process meteorological spatial and time series data. More modules to process and
plot the data are planned.

Content

	Installation
	Requirements

	Installation

	History
	There are so many python packages why a new one?

	What are the requirements?

	Data structure
	File handlers

	Dataset

	Data

	API
	File handler package

	MetData package

	Grid package

	Data loader package

	Utilities package

	Submodule contents

Installation

This package is a python package. Further this package is based on different
python tools. So there are some dependencies which should be matched. To install
this package you should read the installation section.

Requirements

This package is programmed with python 3.5. It is not planned to support python
2.7. In the future this package will be back checked with travis ci for version
3.4 – 3.6. But at the moment we couldn’t guarantee the compatibility of other
versions than 3.5.

	python [https://www.python.org/]

	numpy [http://www.numpy.org/]

	scipy [https://www.scipy.org/]

	pandas [http://pandas.pydata.org/]

	xarray [http://xarray.pydata.org/]

	netcdf4 [http://unidata.github.io/netcdf4-python/]

	pygrib [https://github.com/jswhit/pygrib]

	matplotlib [https://matplotlib.org/]

	basemap [https://matplotlib.org/basemap/users/intro.html]

The following packages are only recommended to use all features.
* cdo [https://code.zmaw.de/projects/cdo/]
* cdo bindings [https://github.com/Try2Code/cdo-bindings]

In the future some requirements will be added for example
scikit-learn [http://scikit-learn.org].

Installation

At the moment this package is not available on pypi and conda. So you have to
clone this package and install it via pip.

It is recommended to install the requirements via a conda virtual environment,
but it is also possible to install them via pip.

Installation and activation via conda (recommended)

git clone git@github.com:maestrotf/pymepps.git
cd pymepps
conda env create -f environment.yml
source activate pymepps
pip install .

Installation via pip

git clone git@github.com:maestrotf/pymepps.git
cd pymepps
pip install -r requirements.txt
pip install .

History

Let’s talk a little about the history and the formation process of this package.

There are so many python packages why a new one?

Python is a rapidly developing programming language. In the last few years has
won more fans, especially in the geoscientific community. There are so many
different packages for different purposes, but no package matched my
requirements.

What are the requirements?

In my bachelor thesis I used a simple method for post-processing of numerical
weather model data. This method was based on a linear regression and is called
model output statistics in the meteorological community. The work for this
thesis needed a system for offline statistical processing of data. Later I
developed an operational weather forecast system based on the same
methods. The requirements of an online and operational weather forecast system
are very different to an offline system. So the requirements for this package
are offline and online processing of weather model data.

The biggest part of the online processing is outsourced to a companion project
called pymepps-streaming [https://github.com/maestrotf/pymepps-streaming].
But this package will be the base for offline and online processing of numerical
weather model data.

Data structure

Pymepps is a system to read and process meteorological data. So we defined some
base types and tools for an easier read and process workflow.

File handlers

File handlers are used to read in the data. A file handler is working on file
basis, such that one file handler could only process one file. There different
file handlers for different file types. Some are only to read in spatial data
and some could only read in time series data. But all file handlers have three
common methods:

	Method to load the data into the memory

	Method to get the variable names within the file

	Method to extract a variable and prepare the variable for the dataset.

The method to extract a variable uses a message based interface so that similar
files could be merged within a dataset.

NetCDF handler

The NetCDF handler could be used to read in netcdf files. The NetCDF handler is
based on the xarray and the netcdf4 package, so it is also possible to load
opendap data streams with this handler. The NetCDF handler could be used to read
in spatial and time series files. At the moment the load of time series data
with this handler is only tested for measurement data from the
“Universtät Hamburg”.

Grib handler

The grib handler could be used to read in grib1 and grib2 files. The grib
handler is based on the pygrib package. The grib handler could be only used to
read in spatial data, due to the requirements of a grib file.

At the moment there are only these two differnt file handlers, but it is planned
to implement some other file handlers to read in hdf4/5 and csv based data.

Dataset

Datasets are used to combine file handlers and to manage the variable selection.
A dataset is working at multiple file level. The messages of the file handlers
are bundled to spatial or time series data. So the two different dataset types
the spatial and the times series dataset have a merge method in common.

Spatial dataset

A spatial dataset is used to combine the file handlers, which are capable to
read in spatial data. The spatial dataset interacts on the same level as the
climate data operators (cdo). So it is possible to process the data of a spatial
dataset with some of the cdos. A method for the general support of the cdos is
planned.The spatial dataset also creates the grid for the spatial data. The grid
could be either predefined or is read in with the griddes function from the cdo.

Time series dataset

A time series dataset is ised to combine the times series file handlers. A time
series dataset is valid for a given coordinates, so it is possible to defined
a coordinate tuple. If no coordinate tuple is set the time series dataset tries
to get the coordinates from the data origin.

Data

Two different data types are defined within this package – spatial data and
time series data. The data types are used to process and plot the data. The
data types are working at variable level. Both data types are like a wrapper
around powerful packages – pandas and xarray.

Spatial data

The spatial data is represented within the SpatialData data type. The data type
is based on xarray.DataArray and could be seen as NetCDF like cube. So it is
easy to save the data as NetCDF file. The spatial data contains a grid, defining
the horizontal grid coordinates of the data. With this grid it is further
possible to remap the data and to transform the data to time series data. These
features are used to process the data in statistical models.

Time series data

The time series data is represented within the TSData data type. The data type
is based on pandas.Series and pandas.DataFrame and could be seen as table like
data.

API

	File handler package
	Base file handler

	Grib file handler

	NetCDF file handler

	Opendap file handler

	MetData package
	Dataset module
	Base Dataset

	Spatial Dataset

	Time series dataset

	Data module
	Base data

	Spatial data

	Time series data

	Grid package
	Grid builder

	Grids
	BaseGrid

	LonLat

	Gaussian

	Projection

	Unstructured

	Curvilinear

	Data loader package
	Base module

	Open model files

	Open station files

	Utilities package
	Path encoder

	TestCase

	File

Submodule contents

	
class pymepps.metdata.SpatialDataset(file_handlers, grid=None, data_origin=None, processes=1)

	Bases: pymepps.metdata.metdataset.MetDataset

SpatialDataset is a class for a pool of file handlers. Typically a
spatial dataset combines the files of one model run, such that it is
possible to select a variable and get a SpatialData instance. For
memory reasons the data of a variable is only loaded if it is selected.

	Parameters

	
	file_handlers (list of childs of FileHandler or None [https://docs.python.org/2/library/constants.html#None]) – The spatial dataset is based on these files. The files should be
either instances of GribHandler or NetCDFHandler. If file handlers
is None then the dataset is used for conversion from TSData to
SpatialData.

	grid (str [https://docs.python.org/2/library/functions.html#str] or Grid or None [https://docs.python.org/2/library/constants.html#None]) – The grid describes the horizontal grid of the spatial data. The grid
will be appended to every created SpatialData instance. If a str is
given it will be checked if the str is a path to a cdo-conform grid
file or a cdo-conform grid string. If this is a instance of a child
of Grid it is assumed that the grid is already initialized and this
grid will be used. If this is None the Grid will be automatically
read from the first file handler. Default is None.

	data_origin (optional) – The data origin. This parameter is important to trace the data
flow. If this is None, there is no data origin and this
dataset will be the starting point of the data flow. Default is
None.

	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – This number of processes is used to calculate time-consuming functions.
For time-consuming functions a progress bar is shown. If the number of
processes is one the functions will be processed sequential. For more
processes than one the multiprocessing module will be used.
Default is 1.

	
select()

	Method to select a variable.

	
selnearest()

	Method to select the nearest grid point for given coordinates.

	
sellonlatbox()

	Method to slice a box with the given coordinates.

	
data_merge(data, var_name)

	Method to merge instances of xarray.DataArray into a SpatialData
instance. Also the grid is read and inserted into the SpatialData
instance.

	Parameters

	
	data (list of xarray.DataArray) – The data list.

	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the variable which is selected within the data list.

	Returns

	The SpatialData instance with the extracted data and the extracted
grid.

	Return type

	SpatialData

	
get_grid(var_name, data_array=None)

	Method to get for given variable name a Grid instance. If the grid
attribute is already a Grid instance this grid will be returned. If the
grid attribute is a str instance, the str will be read from file or from
the given grid str. If the grid attribute isn’t set the grid instance
will be the grid for the variable selected with the first corresponding
file handler and cdo.

	Parameters

	
	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable name, which should be used to generate the grid.

	data_array (xarray.DataArray or None [https://docs.python.org/2/library/constants.html#None], optional) – If the data array is given the method will try to load the grid from
the data array’s attributes. If None the DataArray method will be
skipped. Default is None.

	Returns

	grid – The returned grid. If the returned grid is None, the grid could not
be read.

	Return type

	Instance of child of grid or None [https://docs.python.org/2/library/constants.html#None]

	
class pymepps.metdata.SpatialData(data, grid=None, data_origin=None)

	Bases: pymepps.metdata.metdata.MetData

SpatialData contains spatial based data structures. This class is the
standard data type for file types like netCDF or grib. It’s prepared
for the output of numerical and statistical weather models.
Array based data is always saved to netcdf via xarray.

	
data

	xarray.DataArray or None – The data of this grid based data structure.

	
grid

	Child instance of Grid or None – The corresponding grid of this SpatialData instance. This grid is
used to interpolate/remap the data and to select the nearest grid
point to a given longitude/latitude pair. The grid is also used to
get a basemap instance to determine the grid boundaries for plotting
purpose.

	
data_origin

	object of pymepps or None, optional – The origin of this data. This could be a model run, a station, a
database or something else. Default is None.

	
grid

	

	
static load(path)

	Load a SpatialData instance from a given path. The path is loaded as
SpatialDataset. A correct saved SpatialData instance will have only one
variable within the NetCDF file. So the first variable will be returned
as newly constructed SpatialData instance.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – The path to the saved SpatialData instance.

	Returns

	spdata – The loaded SpatialData instance.

	Return type

	SpatialData

	
merge(*items, **kwargs)

	The merge routine could be used to merge this SpatialData instance with
other instances. The merge creates a new merge dimension, name after the
variable names. The grid of this instance is used as merged grid.

	Parameters

	
	items (xarray.DataArray or SpatialData) – The items are merged with this SpatialData instance. The grid of the
items have to be same as this SpatialData instance.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the merged data. If inplace is True,
this instance is returned.

	Return type

	SpatialData

	
merge_analysis_timedelta(analysis_axis=’runtime’, timedelta_axis=’time’, inplace=False)

	The analysis time axis will be merged with the valid time axis, which
should be given as timedelta. The merged time axis is called validtime
and will be the first data axis.

	Parameters

	
	analysis_axis (str [https://docs.python.org/2/library/functions.html#str], optional) – The analysis time axis name. This axis will be used as basis for the
valid time. Default is runtime.

	timedelta_axis (str [https://docs.python.org/2/library/functions.html#str], optional) – The time delta axis name. This axis should contain the difference to
the analysis time.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the replaced axis.

	Return type

	SpatialData

	
plot(method=’contourf’)

	

	
remapbil(new_grid, inplace=False)

	Remap the horizontal grid with a bilinear approach to a given new grid.

	Parameters

	
	new_grid (Child instance of Grid) – The data is remapped to this grid.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the replaced grid.

	Return type

	SpatialData

	
remapnn(new_grid, inplace=False)

	Remap the horizontal grid with the nearest neighbour approach to a given
new grid.

	Parameters

	
	new_grid (Child instance of Grid) – The data is remapped to this grid.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the replaced grid.

	Return type

	SpatialData

	
save(path)

	To save the SpatialData a copy of this instance is created and the
grid dict of the grid is added to the SpatialData attributes. Then the
instance is saved as NetCDF file.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – The path where the netcdf file should be saved.

	
sellonlatbox(lonlatbox, inplace=False)

	The data is sliced with the given lonlatbox. A new grid is created based
on the sliced coordinates.

	Parameters

	
	lonlatbox (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The sliced SpatialData instance with the replaced grid.

	Return type

	SpatialData

	
set_grid_coordinates(grid=None, data=None)

	Set the coordinates of the data to the coordinates of the given grid.

	Parameters

	
	grid (Child instance of Grid or None [https://docs.python.org/2/library/constants.html#None], optional) – The grid of this instance is set to this grid. If this is None
instance’s grid is used. The last dimensions of instance’s data
is set according to to the grid. Default is None.

	data (np.ndarray or None [https://docs.python.org/2/library/constants.html#None], optional) – The data is set to this data values. The data values should have the
same last dimension as the new grid. If this is None, the data
values of this instance are used. Default is None.

	
to_tsdata(lonlat=None)

	Transform the SpatialData to a TSData based on given coordinates. If
coordinates are given this method selects the nearest neighbour grid
point to this coordinates. The data is flatten to a 2d-Array with the
time as row axis.

	Parameters

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]) or None [https://docs.python.org/2/library/constants.html#None]) – The nearest grid point to this coordinates (longitude, latitude) is
used to generate the time series data. If lonlat is None no
coordinates will be selected and the data is flatten. If the
horizontal grid coordiantes are not a single point it is recommended
to set lonlat.

	Returns

	extracted_data – The extracted TSData instance. The data is based on either a pandas
Series or Dataframe depending on the dimensions of this SpatialData.

	Return type

	TSData

	
update(*items)

	The update routine could be used to update the data of this SpatialData,
based on either xarray.DataArrays or other SpatialData. There are some
assumptions done:

1. The used data to update this SpatialData instance has the same
grid and dimension variables as this instance.
2. Beginning from the left the given items are used to update the
data. Such that intersection problems are resolved in favor of the
newest data.

	Parameters

	items (xarray.DataArray or SpatialData) – The items are used to update the data of this SpatialData instance.
The grid has to be the same as this SpatialData instance.

	
class pymepps.metdata.TSDataset(file_handlers, data_origin=None, lonlat=None, processes=1)

	Bases: pymepps.metdata.metdataset.MetDataset

TSDataset is a class for a pool of file handlers. Typically a
time series dataset combines the files of a station, such that it
is possible to select a variable and get a TSData instance. For
memory reasons the data of a variable is only loaded if it is selected.

	Parameters

	
	file_handlers (list of childs of FileHandler or None [https://docs.python.org/2/library/constants.html#None]) – The spatial dataset is based on these files. The files should be
either instances of NetCDFHandler or TextHandler. If file handlers
is None then the dataset is used for conversion from SpatialData to
TSData.

	data_origin (optional) – The data origin. This parameter is important to trace the data
flow. If this is None, there is no data origin and this
dataset will be the starting point of the data flow. Default is
None.

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]) or None [https://docs.python.org/2/library/constants.html#None]) – The coordinates (longitude, latitude) where the data is valid. If
this is None the coordinates will be set based on data_origin or
based on the first file handler.

	
select()

	Method to select a variable.

	
data_merge(data, var_name)

	

	
select_by_pattern(pattern, return_list=False)

	

	
class pymepps.metdata.TSData(data, data_origin=None, lonlat=None)

	Bases: pymepps.metdata.metdata.MetData

TSData is a data structure for time series based data. This
class is for meteorological measurement station observations and
forecasts. Its instances are based on pandas.dataframe. So it’s
possible to use every operation on this structure specified in the
documentation of pandas [1]. This structure has usually only one
dimension. This data type has only one flexible dimension and
the other dimensions are fixed in comparison to ArrayBasedData.

[1] (http://pandas.pydata.org/pandas-docs/stable/)

	
data

	pandas.dataframe – The data of this time series based data structure.

	
data_origin

	object of pymepps – The origin of this data.This could be a model run, a station, a
database or something else.

	
lonlat

	tuple(float, float) or None, optional – The data of this instance is valid for this coordinates
(longitude, latitude). If this is None the coordiantes are not set
and not all features could be used. Default is None.

	Parameters

	
	data (pandas.dataframe) – The data of this time series based data structure.

	data_origin (object of pymepps) – The origin of this data.This could be a model run, a station, a
database or something else.

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]) or None [https://docs.python.org/2/library/constants.html#None]) – The data is valid for these coordinates.

	
copy()

	

	
static load(path)

	Load the given json file and return a TSData instance with the loaded
file. The loader uses tries to locate the lonlat and the data keys
within the json file. If there are not these keys the loader tries to
load the whole json file into pandas.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – Path to the json file which should be loaded. It is recommended to
load only previously saved TSData instances.

	Returns

	tsdata – The loaded TSData instance.

	Return type

	TSData

	
plot(variable, type, color)

	

	
save(path)

	The data is saved as json file. The pandas to_json method is used to
generate convert the data to json. If lonlat was given it will be saved
under a lonlat key. Json is used instead of HDF5 due to possible
corruption problems.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – Path where the json file should be saved.

	
slice_index(start=”, end=”, inplace=False)

	
	inplace: bool, optional

	If the new data should be replacing the data of this TSData
instance or if the instance should be copied. Default is None.

	Returns

	tsdata – The TSData instance with the sliced index.

	Return type

	TSData

	
update(*items)

	

	
class pymepps.grid.GridBuilder(griddes)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
build_grid()

	This method build up the grid with the griddes attribute.

	Returns

	grid – The built grid. The class of the grid is defined by the gridtype.
The values of the grid are calculated with griddes.

	Return type

	child instance of Grid

	
static decode_str(grid_str)

	Method to clean the given grid str and to get a python dict.
Key and value are separated with =. Every new key value pair needs a new
line delimiter. Only alphanumeric characters are allowed as key and
value. To delimit a value list use spaces and new lines. Lines with #
are used as comment lines.

	Steps to decode the grid string:

	
	String splitting by new line delimiter

	Clean the lines from unallowed characters

	Split the non-comment lines to key, value pairs

	Append elements where no key, value pair is available to the
previous value

	Clean and split the key, value elements from spaces

	Convert the values to float numbers

	Parameters

	grid_str (str [https://docs.python.org/2/library/functions.html#str] or list(str [https://docs.python.org/2/library/functions.html#str])) – The given grid_str which should be decoded. If this is a string the
string will be splitten by new line into a list. It is necessary
that every list entry has only one key = value entry.

	Returns

	grid_dict – The decoded grid dict from the str.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict](str [https://docs.python.org/2/library/functions.html#str], str [https://docs.python.org/2/library/functions.html#str] or float [https://docs.python.org/2/library/functions.html#float])

	
griddes

	

	
static open_string(path_str)

	This method is used to check if the given str is a path or a grid
string.

	Parameters

	path_str (str [https://docs.python.org/2/library/functions.html#str]) – This string is checked and if it is a path it will be read.

	Returns

	grid_str – The given str or the read str.

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	Raises

	TypeError – If path_str is not a str type.

	
pymepps.loader.open_model_dataset(data_path, file_type=None, grid=None, processes=1)

	

	
pymepps.loader.open_station_dataset(data_path, file_type=None, lonlat=None, processes=1)

	

	
class pymepps.utilities.PathEncoder(base_path, date=None, undet_numbers=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
get_encoded()

	Encode the path with given data.

	Returns

	List with encoded paths.

	Return type

	list of str

	
get_file_number()

	

	
class pymepps.utilities.MultiThread(processes, threads=True)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
processes

	

File handler package

The file handlers are used to extract the data from files.

Base file handler

	
class pymepps.metfile.filehandler.FileHandler(file_path)

	
	
get_messages(var_name, **kwargs)

	

	
get_timeseries(var_name, **kwargs)

	

	
load_file()

	

	
var_names

	

Grib file handler

	
class pymepps.metfile.gribhandler.GribHandler(file_path)

	Bases: pymepps.metfile.filehandler.FileHandler

	
close()

	

	
get_messages(var_name, **kwargs)

	Method to get message-wise the data for a given variable as
xr.DataArray.

	Parameters

	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the variable which should be extracted.

	Returns

	data – The list with the message-wise data as DataArray. The DataArray
have six coordinates (analysis, ensemble, time, level, y, x).
The shape of DataArray are normally (1,1,1,1,y_size,x_size).

	Return type

	list of xr.DataArray

	
is_type()

	

	
open()

	

NetCDF file handler

	
class pymepps.metfile.netcdfhandler.NetCDFHandler(file_path)

	Bases: pymepps.metfile.filehandler.FileHandler

	
close()

	

	
get_messages(var_name, **kwargs)

	Method to imitate the message-like behaviour of grib files.

	Parameters

	
	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable name, which should be extracted.

	runtime (np.datetime64, optional) – If the dataset has no runtime this runtime is used. If the runtime
is not set, the runtime will be inferred from file name.

	ensemble (int [https://docs.python.org/2/library/functions.html#int] or str [https://docs.python.org/2/library/functions.html#str], optional) – If the dataset has no ensemble information this ensemble is used. If
the ensemble is not set, the ensemble will be inferred from file
name.

	sliced_coords (tuple [https://docs.python.org/2/library/functions.html#tuple](slice [https://docs.python.org/2/library/functions.html#slice]), optional) – If the cube should be sliced before it is loaded. This is helpful
by large opendap requests. These slice will be used from the behind.
So (slice(1,2,1), slice(3,5,1)) means […, 1:2, 3:5]. If it is not
set all data is used. T

	Returns

	data – The list with the message-wise data as DataArray. The DataArray
have six coordinates (analysis, ensemble, time, level, y, x).
The shape of DataArray are normally (1,1,1,1,y_size,x_size).

	Return type

	list of xr.DataArray

	
get_timeseries(var_name, **kwargs)

	Method to get the time series from a NetCDF file. This is designed for
measurement site data in netcdf format. At the moment this method is
only tested for Wettermast Hamburg data!

	Parameters

	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable name, which should be extracted.

	Returns

	data – The selected variable is extracted as dict with pandas series as
values.

	Return type

	dict with pandas series

	
is_type()

	

	
load_cube(var_name)

	Method to load a variable from the netcdf file and return it as
xr.DataArray.

	Parameters

	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable name, which should be extracted.

	Returns

	variable – The DataArray of the variable.

	Return type

	xr.DataArray

	
lon_lat

	

	
open()

	

	
pymepps.metfile.netcdfhandler.cube_to_series(cube, var_name)

	

Opendap file handler

	
class pymepps.metfile.opendaphandler.OpendapHandler(file_path)

	Bases: pymepps.metfile.netcdfhandler.NetCDFHandler

	
is_type()

	

	
open()

	

MetData package

The metadata package is used to define data types for different data types.

Dataset module

A dataset could load many different of a specific file type.

Base Dataset

	
class pymepps.metdata.metdataset.MetDataset(file_handlers, data_origin=None, processes=1)

	MetDataset is a base class for handling meteorolgical files.

	The normal workroutine would be:

	
	load the files (use of file handlers)

	select the important variables within the files (this object)

	post-process the variables (MetData/SpatialData/TSData object)

	Parameters

	
	file_handlers (list of childs of FileHandler or None.) – The loaded file handlers. This instance load the variables. If the
file handlers are None then the dataset is used for conversion
between Spatial and TSData.

	data_origin (optional) – The class where the data comes from. Normally this would be a
model or a measurement site. If this is None, this isn’t set.
Default is None.

	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – This number of processes is used to calculate time-consuming functions.
For time-consuming functions a progress bar is shown. If the number of
processes is one the functions will be processed sequential. For more
processes than one the multiprocessing module will be used.
Default is 1.

	
data_merge(data, var_name)

	Method to merge the given data by given metadata into one data
structure.

	
file_handlers

	

	
processes

	

	
select(var_name, **kwargs)

	Method to select a variable from this dataset. If the variable is find
in more than one file or message, the method tries to find similarities
within the metadata and to combine the data into one array, with
several dimensions. This method could have a long running time, due to
data loading and combination.

	Parameters

	
	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable which should be extracted. If the variable is not
found within the dataset there would be a value error exception.

	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Additional parameters that are passed to the file handlers.

	Returns

	extracted_data – A child instance of MetData with the data of the selected
variable as data. If None is returned the variable wasn’t found
within the list with possible variable names.

	Return type

	SpatialData, TSData or None [https://docs.python.org/2/library/constants.html#None]

	
select_by_pattern(pattern, return_list=True, **kwargs)

	Method to select variables from this dataset by keywords. This method
uses list comprehension to extract the variable names where the var_name
pattern is within the variable name. If the variable names are found the
variable is selected with the select method.

	Parameters

	
	pattern (str [https://docs.python.org/2/library/functions.html#str]) – The pattern for which should be searched.

	return_list (bool [https://docs.python.org/2/library/functions.html#bool]) – If the return value should be a list or a dictionary.

	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Additional parameters that are passed to the file handlers.

	Returns

	data_list – list(SpatialData or TSData) or None
The return value is a dict/list with SpatialData instances, one
entry for every found variable name. If return_list is False, are
the keys the variable names. If None is returned no variable with
this pattern was found.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict](str [https://docs.python.org/2/library/functions.html#str], SpatialData or TSData) or

	
select_ds(include=None, exclude=None, **kwargs)

	Extract the dataset data into a MetData instance. The include list is
handled superior to the exclude list. If both lists are None all
available variables are used.

	Parameters

	
	include (iterable or None [https://docs.python.org/2/library/constants.html#None]) – Within the include iterable are all variable names, which should be
included into the MetData data. The list will be filtered for
available variable names. If no variable name is available a
ValueError will be raised. If this is None, the include will be
skipped and the exclude list will be used. Default is None.

	exclude (iterable or None [https://docs.python.org/2/library/constants.html#None]) – If no include iterable is given, this exclude iterable is used.
In this case, any available variable name, which is not within this
list is used. If this iterable is also None, all available data
variables are used to construct the MetData instance. Default is
None.

	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Additional parameters that are passed to the file handlers.

	Returns

	extracted_data – The extracted data instance.

	Return type

	TSData or SpatialData

	Raises

	ValueError: – A ValueError is raised if no variable was selected from the dataset.

	
var_names

	Get the available variable names.

	
variables

	Return the variable names and the corresponding file handlers.

Spatial Dataset

	
class pymepps.metdata.spatialdataset.SpatialDataset(file_handlers, grid=None, data_origin=None, processes=1)

	Bases: pymepps.metdata.metdataset.MetDataset

SpatialDataset is a class for a pool of file handlers. Typically a
spatial dataset combines the files of one model run, such that it is
possible to select a variable and get a SpatialData instance. For
memory reasons the data of a variable is only loaded if it is selected.

	Parameters

	
	file_handlers (list of childs of FileHandler or None [https://docs.python.org/2/library/constants.html#None]) – The spatial dataset is based on these files. The files should be
either instances of GribHandler or NetCDFHandler. If file handlers
is None then the dataset is used for conversion from TSData to
SpatialData.

	grid (str [https://docs.python.org/2/library/functions.html#str] or Grid or None [https://docs.python.org/2/library/constants.html#None]) – The grid describes the horizontal grid of the spatial data. The grid
will be appended to every created SpatialData instance. If a str is
given it will be checked if the str is a path to a cdo-conform grid
file or a cdo-conform grid string. If this is a instance of a child
of Grid it is assumed that the grid is already initialized and this
grid will be used. If this is None the Grid will be automatically
read from the first file handler. Default is None.

	data_origin (optional) – The data origin. This parameter is important to trace the data
flow. If this is None, there is no data origin and this
dataset will be the starting point of the data flow. Default is
None.

	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – This number of processes is used to calculate time-consuming functions.
For time-consuming functions a progress bar is shown. If the number of
processes is one the functions will be processed sequential. For more
processes than one the multiprocessing module will be used.
Default is 1.

	
select()

	Method to select a variable.

	
selnearest()

	Method to select the nearest grid point for given coordinates.

	
sellonlatbox()

	Method to slice a box with the given coordinates.

	
data_merge(data, var_name)

	Method to merge instances of xarray.DataArray into a SpatialData
instance. Also the grid is read and inserted into the SpatialData
instance.

	Parameters

	
	data (list of xarray.DataArray) – The data list.

	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the variable which is selected within the data list.

	Returns

	The SpatialData instance with the extracted data and the extracted
grid.

	Return type

	SpatialData

	
get_grid(var_name, data_array=None)

	Method to get for given variable name a Grid instance. If the grid
attribute is already a Grid instance this grid will be returned. If the
grid attribute is a str instance, the str will be read from file or from
the given grid str. If the grid attribute isn’t set the grid instance
will be the grid for the variable selected with the first corresponding
file handler and cdo.

	Parameters

	
	var_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable name, which should be used to generate the grid.

	data_array (xarray.DataArray or None [https://docs.python.org/2/library/constants.html#None], optional) – If the data array is given the method will try to load the grid from
the data array’s attributes. If None the DataArray method will be
skipped. Default is None.

	Returns

	grid – The returned grid. If the returned grid is None, the grid could not
be read.

	Return type

	Instance of child of grid or None [https://docs.python.org/2/library/constants.html#None]

Time series dataset

	
class pymepps.metdata.tsdataset.TSDataset(file_handlers, data_origin=None, lonlat=None, processes=1)

	Bases: pymepps.metdata.metdataset.MetDataset

TSDataset is a class for a pool of file handlers. Typically a
time series dataset combines the files of a station, such that it
is possible to select a variable and get a TSData instance. For
memory reasons the data of a variable is only loaded if it is selected.

	Parameters

	
	file_handlers (list of childs of FileHandler or None [https://docs.python.org/2/library/constants.html#None]) – The spatial dataset is based on these files. The files should be
either instances of NetCDFHandler or TextHandler. If file handlers
is None then the dataset is used for conversion from SpatialData to
TSData.

	data_origin (optional) – The data origin. This parameter is important to trace the data
flow. If this is None, there is no data origin and this
dataset will be the starting point of the data flow. Default is
None.

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]) or None [https://docs.python.org/2/library/constants.html#None]) – The coordinates (longitude, latitude) where the data is valid. If
this is None the coordinates will be set based on data_origin or
based on the first file handler.

	
select()

	Method to select a variable.

	
data_merge(data, var_name)

	

	
select_by_pattern(pattern, return_list=False)

	

Data module

A data module contains all data for one specific variable extracted from a
Dataset.

Base data

	
class pymepps.metdata.metdata.MetData(data, data_origin=None)

	MetData is the base class for meteorological data, like station data,
nwp forecast data etc.

	
append(item, inplace=False)

	

	
copy()

	

	
data

	

	
data_plot(**kwargs)

	Method to refer to the xr_plot layer.
:param kwargs:

	
remove(item, inplace=False)

	

	
update(*items)

	

Spatial data

	
class pymepps.metdata.spatialdata.SpatialData(data, grid=None, data_origin=None)

	Bases: pymepps.metdata.metdata.MetData

SpatialData contains spatial based data structures. This class is the
standard data type for file types like netCDF or grib. It’s prepared
for the output of numerical and statistical weather models.
Array based data is always saved to netcdf via xarray.

	
data

	xarray.DataArray or None – The data of this grid based data structure.

	
grid

	Child instance of Grid or None – The corresponding grid of this SpatialData instance. This grid is
used to interpolate/remap the data and to select the nearest grid
point to a given longitude/latitude pair. The grid is also used to
get a basemap instance to determine the grid boundaries for plotting
purpose.

	
data_origin

	object of pymepps or None, optional – The origin of this data. This could be a model run, a station, a
database or something else. Default is None.

	
grid

	

	
static load(path)

	Load a SpatialData instance from a given path. The path is loaded as
SpatialDataset. A correct saved SpatialData instance will have only one
variable within the NetCDF file. So the first variable will be returned
as newly constructed SpatialData instance.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – The path to the saved SpatialData instance.

	Returns

	spdata – The loaded SpatialData instance.

	Return type

	SpatialData

	
merge(*items, **kwargs)

	The merge routine could be used to merge this SpatialData instance with
other instances. The merge creates a new merge dimension, name after the
variable names. The grid of this instance is used as merged grid.

	Parameters

	
	items (xarray.DataArray or SpatialData) – The items are merged with this SpatialData instance. The grid of the
items have to be same as this SpatialData instance.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the merged data. If inplace is True,
this instance is returned.

	Return type

	SpatialData

	
merge_analysis_timedelta(analysis_axis=’runtime’, timedelta_axis=’time’, inplace=False)

	The analysis time axis will be merged with the valid time axis, which
should be given as timedelta. The merged time axis is called validtime
and will be the first data axis.

	Parameters

	
	analysis_axis (str [https://docs.python.org/2/library/functions.html#str], optional) – The analysis time axis name. This axis will be used as basis for the
valid time. Default is runtime.

	timedelta_axis (str [https://docs.python.org/2/library/functions.html#str], optional) – The time delta axis name. This axis should contain the difference to
the analysis time.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the replaced axis.

	Return type

	SpatialData

	
plot(method=’contourf’)

	

	
remapbil(new_grid, inplace=False)

	Remap the horizontal grid with a bilinear approach to a given new grid.

	Parameters

	
	new_grid (Child instance of Grid) – The data is remapped to this grid.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the replaced grid.

	Return type

	SpatialData

	
remapnn(new_grid, inplace=False)

	Remap the horizontal grid with the nearest neighbour approach to a given
new grid.

	Parameters

	
	new_grid (Child instance of Grid) – The data is remapped to this grid.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The SpatialData instance with the replaced grid.

	Return type

	SpatialData

	
save(path)

	To save the SpatialData a copy of this instance is created and the
grid dict of the grid is added to the SpatialData attributes. Then the
instance is saved as NetCDF file.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – The path where the netcdf file should be saved.

	
sellonlatbox(lonlatbox, inplace=False)

	The data is sliced with the given lonlatbox. A new grid is created based
on the sliced coordinates.

	Parameters

	
	lonlatbox (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	inplace (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If the new data should be replacing the data of this SpatialData
instance or if the instance should be copied. Default is False.

	Returns

	spdata – The sliced SpatialData instance with the replaced grid.

	Return type

	SpatialData

	
set_grid_coordinates(grid=None, data=None)

	Set the coordinates of the data to the coordinates of the given grid.

	Parameters

	
	grid (Child instance of Grid or None [https://docs.python.org/2/library/constants.html#None], optional) – The grid of this instance is set to this grid. If this is None
instance’s grid is used. The last dimensions of instance’s data
is set according to to the grid. Default is None.

	data (np.ndarray or None [https://docs.python.org/2/library/constants.html#None], optional) – The data is set to this data values. The data values should have the
same last dimension as the new grid. If this is None, the data
values of this instance are used. Default is None.

	
to_tsdata(lonlat=None)

	Transform the SpatialData to a TSData based on given coordinates. If
coordinates are given this method selects the nearest neighbour grid
point to this coordinates. The data is flatten to a 2d-Array with the
time as row axis.

	Parameters

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]) or None [https://docs.python.org/2/library/constants.html#None]) – The nearest grid point to this coordinates (longitude, latitude) is
used to generate the time series data. If lonlat is None no
coordinates will be selected and the data is flatten. If the
horizontal grid coordiantes are not a single point it is recommended
to set lonlat.

	Returns

	extracted_data – The extracted TSData instance. The data is based on either a pandas
Series or Dataframe depending on the dimensions of this SpatialData.

	Return type

	TSData

	
update(*items)

	The update routine could be used to update the data of this SpatialData,
based on either xarray.DataArrays or other SpatialData. There are some
assumptions done:

1. The used data to update this SpatialData instance has the same
grid and dimension variables as this instance.
2. Beginning from the left the given items are used to update the
data. Such that intersection problems are resolved in favor of the
newest data.

	Parameters

	items (xarray.DataArray or SpatialData) – The items are used to update the data of this SpatialData instance.
The grid has to be the same as this SpatialData instance.

Time series data

	
class pymepps.metdata.tsdata.TSData(data, data_origin=None, lonlat=None)

	Bases: pymepps.metdata.metdata.MetData

TSData is a data structure for time series based data. This
class is for meteorological measurement station observations and
forecasts. Its instances are based on pandas.dataframe. So it’s
possible to use every operation on this structure specified in the
documentation of pandas [1]. This structure has usually only one
dimension. This data type has only one flexible dimension and
the other dimensions are fixed in comparison to ArrayBasedData.

[1] (http://pandas.pydata.org/pandas-docs/stable/)

	
data

	pandas.dataframe – The data of this time series based data structure.

	
data_origin

	object of pymepps – The origin of this data.This could be a model run, a station, a
database or something else.

	
lonlat

	tuple(float, float) or None, optional – The data of this instance is valid for this coordinates
(longitude, latitude). If this is None the coordiantes are not set
and not all features could be used. Default is None.

	Parameters

	
	data (pandas.dataframe) – The data of this time series based data structure.

	data_origin (object of pymepps) – The origin of this data.This could be a model run, a station, a
database or something else.

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]) or None [https://docs.python.org/2/library/constants.html#None]) – The data is valid for these coordinates.

	
copy()

	

	
static load(path)

	Load the given json file and return a TSData instance with the loaded
file. The loader uses tries to locate the lonlat and the data keys
within the json file. If there are not these keys the loader tries to
load the whole json file into pandas.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – Path to the json file which should be loaded. It is recommended to
load only previously saved TSData instances.

	Returns

	tsdata – The loaded TSData instance.

	Return type

	TSData

	
plot(variable, type, color)

	

	
save(path)

	The data is saved as json file. The pandas to_json method is used to
generate convert the data to json. If lonlat was given it will be saved
under a lonlat key. Json is used instead of HDF5 due to possible
corruption problems.

	Parameters

	path (str [https://docs.python.org/2/library/functions.html#str]) – Path where the json file should be saved.

	
slice_index(start=”, end=”, inplace=False)

	
	inplace: bool, optional

	If the new data should be replacing the data of this TSData
instance or if the instance should be copied. Default is None.

	Returns

	tsdata – The TSData instance with the sliced index.

	Return type

	TSData

	
update(*items)

	

Grid package

The grid package is an extension for the SpatialDataset to support horizontal
grid transformations and functions.

Grid builder

	
class pymepps.grid.builder.GridBuilder(griddes)

	
	
build_grid()

	This method build up the grid with the griddes attribute.

	Returns

	grid – The built grid. The class of the grid is defined by the gridtype.
The values of the grid are calculated with griddes.

	Return type

	child instance of Grid

	
static decode_str(grid_str)

	Method to clean the given grid str and to get a python dict.
Key and value are separated with =. Every new key value pair needs a new
line delimiter. Only alphanumeric characters are allowed as key and
value. To delimit a value list use spaces and new lines. Lines with #
are used as comment lines.

	Steps to decode the grid string:

	
	String splitting by new line delimiter

	Clean the lines from unallowed characters

	Split the non-comment lines to key, value pairs

	Append elements where no key, value pair is available to the
previous value

	Clean and split the key, value elements from spaces

	Convert the values to float numbers

	Parameters

	grid_str (str [https://docs.python.org/2/library/functions.html#str] or list(str [https://docs.python.org/2/library/functions.html#str])) – The given grid_str which should be decoded. If this is a string the
string will be splitten by new line into a list. It is necessary
that every list entry has only one key = value entry.

	Returns

	grid_dict – The decoded grid dict from the str.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict](str [https://docs.python.org/2/library/functions.html#str], str [https://docs.python.org/2/library/functions.html#str] or float [https://docs.python.org/2/library/functions.html#float])

	
griddes

	

	
static open_string(path_str)

	This method is used to check if the given str is a path or a grid
string.

	Parameters

	path_str (str [https://docs.python.org/2/library/functions.html#str]) – This string is checked and if it is a path it will be read.

	Returns

	grid_str – The given str or the read str.

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	Raises

	TypeError – If path_str is not a str type.

Grids

BaseGrid

	
class pymepps.grid.grid.Grid(grid_dict)

	The base class for every grid type.

	
static convert_to_deg(field, unit)

	Method to convert given field with given unit into degree.

	Parameters

	
	field –

	unit –

	
copy()

	

	
get_coord_names()

	Returns the name of the coordinates.

	Returns

	
	yname (str) – The name of the y-dimension.

	xname (str) – The name of the x-dimension

	
get_coords()

	Get the coordinates in a xarray-compatible way.

	Returns

	coords – The coordinates in a xarray compatible coordinates format. The key
is the coordinate name. The coordinates have as value a tuple with
their own name, indicating that the they are self-describing, and
the coordinate values as numpy array.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict](str [https://docs.python.org/2/library/functions.html#str], (str [https://docs.python.org/2/library/functions.html#str], numpy.ndarray))

	
get_nearest_point(data, coord)

	Get the nearest neighbour grid point for a given coordinate. The
distance between the grid points and the given coordinates is calculated
with the haversine formula.

	Parameters

	
	coord (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float])) – The data of the nearest grid point to this coordinate
(latitude, longitude) will be returned. The coordinate should be in
degree.

	data (numpy.array) – The return value is extracted from this array. The array should have
at least two dimensions. If the array has more than two dimensions
the last two dimensions will be used as horizontal grid dimensions.

	Returns

	nearest_data – The extracted data for the nearest neighbour grid point. The
dimensions of this array are the same as the input data array
without the horizontal coordinate dimensions. There is at least one
dimension.

	Return type

	numpy.ndarray

	
lat_lon

	Get latitudes and longitudes for every grid point as xarray.Dataset.

	Returns

	lat_lon – The latitude and longitude values for every grid point as
xarray.Dataset with latitude and longitude as variables.

	Return type

	xarray.Dataset

	
len_coords

	Get the number of coordinates for this grid.

	Returns

	len_coords – Number of coordinates for this grid.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
lonlatbox(data, ll_box)

	

	
static normalize_lat_lon(lat, lon, data=None)

	The given coordinates will be normalized and reorder into basemap
conform coordinates. If the longitude values are between 0° and 360°,
they will be normalized to values between -180° and 180°. Then the
coordinates will be reorder, such that they are in an increasing order.

	Parameters

	
	lat (numpy.ndarray) – The latitude values. They are representing the first data dimension.

	lon (numpy.ndarray) – The longitude values. They are representing the second data
dimension.

	data (numpy.ndarray or None [https://docs.python.org/2/library/constants.html#None], optional) – The data values. They will be also reordered by lat and lon. If this
is None, only lat and lon will be reordered and returned. Default is
None.

	Returns

	
	lat (numpy.ndarray) – Ordered latitude values.

	lon (numpy.ndarray) – Ordered and normalized longitude values.

	data (numpy.ndarray or None) – The orderd data based on given latitudes and longitudes. This is
None if no other data was given as parameter.

	
raw_dim

	Get the raw dimension values, as they are constructed by the grid
description.

	Returns

	constructed_dim – The constructed dimensions. Depending on the given grid type, it is
either a tuple of arrays or a single array.

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple](numpy.ndarray) or numpy.ndarray

	
remapbil(data, other_grid)

	The given data will be remapped via bilinear interpolation to the given
other grid.

	Parameters

	
	data (numpy.ndarray) – The data which should be remapped. There have to be at least two
dimensions. If the data has more than two dimensions we suppose that
the last two dimensions are the horizontal grid dimensions.

	other_grid (child instance of Grid) – The data will be remapped to this grid.

	Returns

	remapped_data – The remapped data. The shape of the last two dimensions is now the
shape of the other_grid coordinates.

	Return type

	numpy.ndarray

Notes

Technically basemap’s interp with order=1 is used to interpolate the
data.

	
remapnn(data, other_grid)

	The given data will be remapped via nearest neighbour to the given other
grid.

	Parameters

	
	data (numpy.ndarray) – The data which should be remapped. There have to be at least two
dimensions. If the data has more than two dimensions we suppose that
the last two dimensions are the horizontal grid dimensions.

	other_grid (child instance of Grid) – The data will be remapped to this grid.

	Returns

	remapped_data – The remapped data. The shape of the last two dimensions is now the
shape of the other_grid coordinates.

	Return type

	numpy.ndarray

Notes

Technically basemap’s interp with order=0 is used to interpolate the
data.

	
pymepps.grid.grid.distance_haversine(p1, p2)

	Calculate the great circle distance between two points
on the earth. The formula is based on the haversine formula 1.

	Parameters

	
	p1 (tuple [https://docs.python.org/2/library/functions.html#tuple] (array_like, array_like)) – The coordinates (latitude, longitude) of the first point in degrees.

	p2 (tuple [https://docs.python.org/2/library/functions.html#tuple] (array_like, array_like)) – The coordinates (latitude, longitude) of the second point in degrees.

	Returns

	d – The calculated haversine distance in meters.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Notes

Script based on: http://stackoverflow.com/a/29546836

References

	1(1,2)

	de Mendoza y Ríos, Memoria sobre algunos métodos nuevos de calcular
la longitud por las distancias lunares: y aplication de su teórica á la
solucion de otros problemas de navegacion, 1795.

LonLat

	
class pymepps.grid.lonlat.LonLatGrid(grid_dict)

	Bases: pymepps.grid.grid.Grid

A LonLatGrid is a grid with evenly distributed longitude and latitude values.
This is the right grid if the grid could be described with a evenly
distributed range of values for longitude and latitude.

	
lonlatbox(data, ll_box)

	The data is sliced with given lonlat box.

	Parameters

	
	data (numpy.ndarray) – The data which should be sliced. The shape of the last two
dimensions should be the same as the grid dimensions.

	ll_box (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	Returns

	
	sliced_data (numpy.ndarray) – The sliced data. The last two dimensions are sliced.

	grid (Grid) – A new child instance of Grid with the sliced coordinates as values.

Gaussian

	
class pymepps.grid.gaussian.GaussianGrid(grid_dict)

	Bases: pymepps.grid.lonlat.LonLatGrid

The gaussian grid is similar to the lonlat grid. This is the right grid if
longitude and/or latitude could be described with a non-evenly distributed
list of values.

Projection

	
class pymepps.grid.projection.BaseProj

	BaseProj is a base class for every projection in a proj4-conform way.

	
transform_from_latlon(lon, lat)

	Transform the given lon, lat arrays to x and y values.

	
transform_to_latlon(x, y)

	Transform the given x and y arrays to latitude and longitude values.

	
class pymepps.grid.projection.ProjectionGrid(grid_dict)

	A projection grid could be defined by a evenly distributed grid. The grid
could be translated to a longitude and latitude grid by a predefined
projection. At the moment only projections defined by a proj4 string or a
rotated latitude and longitude are supported.

	
get_projection()

	

	
lonlatbox(data, ll_box)

	The data is sliced with given lonlat box to a unstructured grid.

	Parameters

	
	data (numpy.ndarray) – The data which should be sliced. The shape of the last two
dimensions should be the same as the grid dimensions.

	ll_box (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	Returns

	
	sliced_data (numpy.ndarray) – The sliced data. The last two dimensions are flattened and sliced.

	grid (UnstructuredGrid) – A new instance of UnstructuredGrid with the sliced coordinates as
values.

	
class pymepps.grid.projection.RotPoleProj(npole_lat, npole_lon)

	Class for to calculate the transformation from rotated pole coordinates to
normal latitude and longitude coordinates. The rotated pole coordinates are
calculated in a cf-conform manner, with a rotated north pole. The
calculations are based on 1. If the resulting latitude coordinate equals
-90° or 90° the longitude coordinate will be set to 0°.

	Parameters

	
	npole_lat (float [https://docs.python.org/2/library/functions.html#float]) – The latitude of the rotated north pole in degrees.

	npole_lom (float [https://docs.python.org/2/library/functions.html#float]) – The longitude of the rotated north pole in degrees.

References

[1] http://de.mathworks.com/matlabcentral/fileexchange/43435-rotated-grid-transform

	
lonlatbox(data, ll_box)

	The data is sliced with given lonlat box to a unstructured grid.

	Parameters

	
	data (numpy.ndarray) – The data which should be sliced. The shape of the last two
dimensions should be the same as the grid dimensions.

	ll_box (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	Returns

	
	sliced_data (numpy.ndarray) – The sliced data. The last two dimensions are flattened and sliced.

	grid (UnstructuredGrid) – A new instance of UnstructuredGrid with the sliced coordinates as
values.

	
north_pole

	Get the north pole for the rotated pole projection.

	
transform_from_lonlat(lon, lat)

	Transform the given lon, lat arrays to x and y values.

	
transform_to_lonlat(x, y)

	Transform the given x and y arrays to latitude and longitude values.

Unstructured

	
class pymepps.grid.unstructured.UnstructuredGrid(grid_dict)

	Bases: pymepps.grid.grid.Grid

In an unstructured grid the grid could have any shape. A famous example is
the triangulated ICON grid. At the moment the longitude and latitude values
should have been precomputed. The grid could be calculated with the number
of vertices and the coordinates of the boundary.

	
get_coord_names()

	Returns the name of the coordinates.

	Returns

	coord_names – The coordinate name for this unstructured grid. This is always a
list, with only one entry: ncells.

	Return type

	list(str [https://docs.python.org/2/library/functions.html#str])

	
len_coords

	Get the number of coordinates for this grid.

	Returns

	len_coords – Number of coordinates for this grid.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
lonlatbox(data, ll_box)

	The data is sliced with given lonlat box to a unstructured grid.

	Parameters

	
	data (numpy.ndarray) – The data which should be sliced. The shape of the dimension should
be the same as the grid dimension.

	ll_box (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	Returns

	
	sliced_data (numpy.ndarray) – The sliced data. The last dimension is sliced.

	grid (UnstructuredGrid) – A new instance of UnstructuredGrid with the sliced coordinates as
values.

Curvilinear

	
class pymepps.grid.curvilinear.CurvilinearGrid(grid_dict)

	Bases: pymepps.grid.lonlat.LonLatGrid

A curvilinear grid could be described as special case of a lonlat grid
where the number of vertices is 4. The raw grid values are calculated based
on the given grid rules. At the moment the lon lat values had to be
precomputed.

	
lonlatbox(data, ll_box)

	The data is sliced with given lonlat box to a unstructured grid.

	Parameters

	
	data (numpy.ndarray) – The data which should be sliced. The shape of the last two
dimensions should be the same as the grid dimensions.

	ll_box (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])) – The longitude and latitude box with four entries as degree. The
entries are handled in the following way:

(left/west, top/north, right/east, bottom/south)

	Returns

	
	sliced_data (numpy.ndarray) – The sliced data. The last two dimensions are flattened and sliced.

	grid (UnstructuredGrid) – A new instance of UnstructuredGrid with the sliced coordinates as
values.

Data loader package

The data loader package is used to open time series and spatial data.

Base module

	
class pymepps.loader.base.BaseLoader(data_path, file_type=None, processes=1)

	
	
load_data()

	

Open model files

	
class pymepps.loader.model.ModelLoader(data_path, file_type=None, grid=None, processes=1)

	Bases: pymepps.loader.base.BaseLoader

A simplified way to load weather model data into a SpatialDataset.
Technically this class is a helper and wrapper around the file handlers and
SpatialDataset.

	Parameters

	
	data_path (str [https://docs.python.org/2/library/functions.html#str]) – The path to the files. This path could have a glob-conform path pattern.
Every file found within this pattern will be used to determine the file
type and to generate the SpatialDataset.

	file_type (str [https://docs.python.org/2/library/functions.html#str] or None [https://docs.python.org/2/library/constants.html#None], optional) – The file type determines which file handler will be used to load the
data. If the file type is None it will be determined automatically based
on given files. All the files with the majority file type will be used
to generate the SpatialDataset. The available file_types are:

nc: NetCDF files
grib2: Grib2 files
grib1: Grib1 files
dap: Opendap urls

	grid (str [https://docs.python.org/2/library/functions.html#str] or Grid or None [https://docs.python.org/2/library/constants.html#None], optional) – The grid describes the horizontal grid of the spatial data. The given
grid will be forwarded to the given SpatialDataset instance. Default is
None.

	
pymepps.loader.model.open_model_dataset(data_path, file_type=None, grid=None, processes=1)

	

Open station files

	
class pymepps.loader.station.StationLoader(data_path, file_type=None, lonlat=None, processes=1)

	Bases: pymepps.loader.base.BaseLoader

A simplified way to load station data into a TSDataset.
Technically this class is a helper and wrapper around the file handlers and
TSData.

	Parameters

	
	data_path (str [https://docs.python.org/2/library/functions.html#str]) – The path to the files. This path could have a glob-conform path pattern.
Every file found within this pattern will be used to determine the file
type and to generate the TSDataset.

	file_type (str [https://docs.python.org/2/library/functions.html#str] or None [https://docs.python.org/2/library/constants.html#None], optional) – The file type determines which file handler will be used to load the
data. If the file type is None it will be determined automatically based
on given files. All the files with the majority file type will be used
to generate the TSDataset. The available file_types are:

nc: NetCDF files
wm: Text files in a specific “Wettermast format”

	lonlat (tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float], float [https://docs.python.org/2/library/functions.html#float]), optional) – The lonlat coordinate tuple describes the position of the station in
degrees. If this is None the position is unknown. Default is None.

	
lon_lat()

	

	
pymepps.loader.station.open_station_dataset(data_path, file_type=None, lonlat=None, processes=1)

	

Utilities package

Path encoder

	
class pymepps.utilities.path_encoder.PathEncoder(base_path, date=None, undet_numbers=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
get_encoded()

	Encode the path with given data.

	Returns

	List with encoded paths.

	Return type

	list of str

	
get_file_number()

	

TestCase

	
class pymepps.utilities.testcase.TestCase(methodName=’runTest’)

	Bases: unittest.case.TestCase

	
assertAttribute(obj, attr)

	

	
assertCallable(obj, method)

	

	
assertMethod(obj, method)

	

File

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymepps	

 	
 	
 pymepps.grid	

 	
 	
 pymepps.grid.builder	

 	
 	
 pymepps.grid.curvilinear	

 	
 	
 pymepps.grid.gaussian	

 	
 	
 pymepps.grid.grid	

 	
 	
 pymepps.grid.lonlat	

 	
 	
 pymepps.grid.projection	

 	
 	
 pymepps.grid.unstructured	

 	
 	
 pymepps.loader	

 	
 	
 pymepps.loader.base	

 	
 	
 pymepps.loader.model	

 	
 	
 pymepps.loader.station	

 	
 	
 pymepps.metdata	

 	
 	
 pymepps.metdata.metdata	

 	
 	
 pymepps.metdata.metdataset	

 	
 	
 pymepps.metdata.spatialdata	

 	
 	
 pymepps.metdata.spatialdataset	

 	
 	
 pymepps.metdata.tsdata	

 	
 	
 pymepps.metdata.tsdataset	

 	
 	
 pymepps.metfile	

 	
 	
 pymepps.metfile.filehandler	

 	
 	
 pymepps.metfile.gribhandler	

 	
 	
 pymepps.metfile.netcdfhandler	

 	
 	
 pymepps.metfile.opendaphandler	

 	
 	
 pymepps.utilities	

 	
 	
 pymepps.utilities.path_encoder	

 	
 	
 pymepps.utilities.testcase	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	append() (pymepps.metdata.metdata.MetData method)

 	assertAttribute() (pymepps.utilities.testcase.TestCase method)

 	
 	assertCallable() (pymepps.utilities.testcase.TestCase method)

 	assertMethod() (pymepps.utilities.testcase.TestCase method)

B

 	
 	BaseLoader (class in pymepps.loader.base)

 	BaseProj (class in pymepps.grid.projection)

 	
 	build_grid() (pymepps.grid.builder.GridBuilder method)

 	(pymepps.grid.GridBuilder method)

C

 	
 	close() (pymepps.metfile.gribhandler.GribHandler method)

 	(pymepps.metfile.netcdfhandler.NetCDFHandler method)

 	convert_to_deg() (pymepps.grid.grid.Grid static method)

 	copy() (pymepps.grid.grid.Grid method)

 	(pymepps.metdata.TSData method)

 	(pymepps.metdata.metdata.MetData method)

 	(pymepps.metdata.tsdata.TSData method)

 	
 	cube_to_series() (in module pymepps.metfile.netcdfhandler)

 	CurvilinearGrid (class in pymepps.grid.curvilinear)

D

 	
 	data (pymepps.metdata.metdata.MetData attribute)

 	(pymepps.metdata.SpatialData attribute)

 	(pymepps.metdata.TSData attribute)

 	(pymepps.metdata.spatialdata.SpatialData attribute)

 	(pymepps.metdata.tsdata.TSData attribute)

 	data_merge() (pymepps.metdata.metdataset.MetDataset method)

 	(pymepps.metdata.SpatialDataset method)

 	(pymepps.metdata.TSDataset method)

 	(pymepps.metdata.spatialdataset.SpatialDataset method)

 	(pymepps.metdata.tsdataset.TSDataset method)

 	
 	data_origin (pymepps.metdata.SpatialData attribute)

 	(pymepps.metdata.TSData attribute)

 	(pymepps.metdata.spatialdata.SpatialData attribute)

 	(pymepps.metdata.tsdata.TSData attribute)

 	data_plot() (pymepps.metdata.metdata.MetData method)

 	decode_str() (pymepps.grid.builder.GridBuilder static method)

 	(pymepps.grid.GridBuilder static method)

 	distance_haversine() (in module pymepps.grid.grid)

F

 	
 	file_handlers (pymepps.metdata.metdataset.MetDataset attribute)

 	
 	FileHandler (class in pymepps.metfile.filehandler)

G

 	
 	GaussianGrid (class in pymepps.grid.gaussian)

 	get_coord_names() (pymepps.grid.grid.Grid method)

 	(pymepps.grid.unstructured.UnstructuredGrid method)

 	get_coords() (pymepps.grid.grid.Grid method)

 	get_encoded() (pymepps.utilities.path_encoder.PathEncoder method)

 	(pymepps.utilities.PathEncoder method)

 	get_file_number() (pymepps.utilities.path_encoder.PathEncoder method)

 	(pymepps.utilities.PathEncoder method)

 	get_grid() (pymepps.metdata.SpatialDataset method)

 	(pymepps.metdata.spatialdataset.SpatialDataset method)

 	get_messages() (pymepps.metfile.filehandler.FileHandler method)

 	(pymepps.metfile.gribhandler.GribHandler method)

 	(pymepps.metfile.netcdfhandler.NetCDFHandler method)

 	
 	get_nearest_point() (pymepps.grid.grid.Grid method)

 	get_projection() (pymepps.grid.projection.ProjectionGrid method)

 	get_timeseries() (pymepps.metfile.filehandler.FileHandler method)

 	(pymepps.metfile.netcdfhandler.NetCDFHandler method)

 	GribHandler (class in pymepps.metfile.gribhandler)

 	Grid (class in pymepps.grid.grid)

 	grid (pymepps.metdata.SpatialData attribute), [1]

 	(pymepps.metdata.spatialdata.SpatialData attribute), [1]

 	GridBuilder (class in pymepps.grid)

 	(class in pymepps.grid.builder)

 	griddes (pymepps.grid.builder.GridBuilder attribute)

 	(pymepps.grid.GridBuilder attribute)

I

 	
 	is_type() (pymepps.metfile.gribhandler.GribHandler method)

 	(pymepps.metfile.netcdfhandler.NetCDFHandler method)

 	(pymepps.metfile.opendaphandler.OpendapHandler method)

L

 	
 	lat_lon (pymepps.grid.grid.Grid attribute)

 	len_coords (pymepps.grid.grid.Grid attribute)

 	(pymepps.grid.unstructured.UnstructuredGrid attribute)

 	load() (pymepps.metdata.SpatialData static method)

 	(pymepps.metdata.TSData static method)

 	(pymepps.metdata.spatialdata.SpatialData static method)

 	(pymepps.metdata.tsdata.TSData static method)

 	load_cube() (pymepps.metfile.netcdfhandler.NetCDFHandler method)

 	load_data() (pymepps.loader.base.BaseLoader method)

 	load_file() (pymepps.metfile.filehandler.FileHandler method)

 	
 	lon_lat (pymepps.metfile.netcdfhandler.NetCDFHandler attribute)

 	lon_lat() (pymepps.loader.station.StationLoader method)

 	lonlat (pymepps.metdata.TSData attribute)

 	(pymepps.metdata.tsdata.TSData attribute)

 	lonlatbox() (pymepps.grid.curvilinear.CurvilinearGrid method)

 	(pymepps.grid.grid.Grid method)

 	(pymepps.grid.lonlat.LonLatGrid method)

 	(pymepps.grid.projection.ProjectionGrid method)

 	(pymepps.grid.projection.RotPoleProj method)

 	(pymepps.grid.unstructured.UnstructuredGrid method)

 	LonLatGrid (class in pymepps.grid.lonlat)

M

 	
 	merge() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	merge_analysis_timedelta() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	
 	MetData (class in pymepps.metdata.metdata)

 	MetDataset (class in pymepps.metdata.metdataset)

 	ModelLoader (class in pymepps.loader.model)

 	MultiThread (class in pymepps.utilities)

N

 	
 	NetCDFHandler (class in pymepps.metfile.netcdfhandler)

 	
 	normalize_lat_lon() (pymepps.grid.grid.Grid static method)

 	north_pole (pymepps.grid.projection.RotPoleProj attribute)

O

 	
 	open() (pymepps.metfile.gribhandler.GribHandler method)

 	(pymepps.metfile.netcdfhandler.NetCDFHandler method)

 	(pymepps.metfile.opendaphandler.OpendapHandler method)

 	open_model_dataset() (in module pymepps.loader)

 	(in module pymepps.loader.model)

 	
 	open_station_dataset() (in module pymepps.loader)

 	(in module pymepps.loader.station)

 	open_string() (pymepps.grid.builder.GridBuilder static method)

 	(pymepps.grid.GridBuilder static method)

 	OpendapHandler (class in pymepps.metfile.opendaphandler)

P

 	
 	PathEncoder (class in pymepps.utilities)

 	(class in pymepps.utilities.path_encoder)

 	plot() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.TSData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	(pymepps.metdata.tsdata.TSData method)

 	processes (pymepps.metdata.metdataset.MetDataset attribute)

 	(pymepps.utilities.MultiThread attribute)

 	ProjectionGrid (class in pymepps.grid.projection)

 	pymepps.grid (module)

 	pymepps.grid.builder (module)

 	pymepps.grid.curvilinear (module)

 	pymepps.grid.gaussian (module)

 	pymepps.grid.grid (module)

 	pymepps.grid.lonlat (module)

 	pymepps.grid.projection (module)

 	pymepps.grid.unstructured (module)

 	pymepps.loader (module)

 	
 	pymepps.loader.base (module)

 	pymepps.loader.model (module)

 	pymepps.loader.station (module)

 	pymepps.metdata (module)

 	pymepps.metdata.metdata (module)

 	pymepps.metdata.metdataset (module)

 	pymepps.metdata.spatialdata (module)

 	pymepps.metdata.spatialdataset (module)

 	pymepps.metdata.tsdata (module)

 	pymepps.metdata.tsdataset (module)

 	pymepps.metfile (module)

 	pymepps.metfile.filehandler (module)

 	pymepps.metfile.gribhandler (module)

 	pymepps.metfile.netcdfhandler (module)

 	pymepps.metfile.opendaphandler (module)

 	pymepps.utilities (module)

 	pymepps.utilities.path_encoder (module)

 	pymepps.utilities.testcase (module)

R

 	
 	raw_dim (pymepps.grid.grid.Grid attribute)

 	remapbil() (pymepps.grid.grid.Grid method)

 	(pymepps.metdata.SpatialData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	
 	remapnn() (pymepps.grid.grid.Grid method)

 	(pymepps.metdata.SpatialData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	remove() (pymepps.metdata.metdata.MetData method)

 	RotPoleProj (class in pymepps.grid.projection)

S

 	
 	save() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.TSData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	(pymepps.metdata.tsdata.TSData method)

 	select() (pymepps.metdata.metdataset.MetDataset method)

 	(pymepps.metdata.SpatialDataset method)

 	(pymepps.metdata.TSDataset method)

 	(pymepps.metdata.spatialdataset.SpatialDataset method)

 	(pymepps.metdata.tsdataset.TSDataset method)

 	select_by_pattern() (pymepps.metdata.metdataset.MetDataset method)

 	(pymepps.metdata.TSDataset method)

 	(pymepps.metdata.tsdataset.TSDataset method)

 	select_ds() (pymepps.metdata.metdataset.MetDataset method)

 	sellonlatbox() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.SpatialDataset method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	(pymepps.metdata.spatialdataset.SpatialDataset method)

 	
 	selnearest() (pymepps.metdata.SpatialDataset method)

 	(pymepps.metdata.spatialdataset.SpatialDataset method)

 	set_grid_coordinates() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	slice_index() (pymepps.metdata.TSData method)

 	(pymepps.metdata.tsdata.TSData method)

 	SpatialData (class in pymepps.metdata)

 	(class in pymepps.metdata.spatialdata)

 	SpatialDataset (class in pymepps.metdata)

 	(class in pymepps.metdata.spatialdataset)

 	StationLoader (class in pymepps.loader.station)

T

 	
 	TestCase (class in pymepps.utilities.testcase)

 	to_tsdata() (pymepps.metdata.SpatialData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	transform_from_latlon() (pymepps.grid.projection.BaseProj method)

 	transform_from_lonlat() (pymepps.grid.projection.RotPoleProj method)

 	
 	transform_to_latlon() (pymepps.grid.projection.BaseProj method)

 	transform_to_lonlat() (pymepps.grid.projection.RotPoleProj method)

 	TSData (class in pymepps.metdata)

 	(class in pymepps.metdata.tsdata)

 	TSDataset (class in pymepps.metdata)

 	(class in pymepps.metdata.tsdataset)

U

 	
 	UnstructuredGrid (class in pymepps.grid.unstructured)

 	update() (pymepps.metdata.metdata.MetData method)

 	(pymepps.metdata.SpatialData method)

 	(pymepps.metdata.TSData method)

 	(pymepps.metdata.spatialdata.SpatialData method)

 	(pymepps.metdata.tsdata.TSData method)

V

 	
 	var_names (pymepps.metdata.metdataset.MetDataset attribute)

 	(pymepps.metfile.filehandler.FileHandler attribute)

 	
 	variables (pymepps.metdata.metdataset.MetDataset attribute)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Python meteorological post-processing system

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Installation and activation via conda (recommended)

 		
 Installation via pip

 		
 History

 		
 There are so many python packages why a new one?

 		
 What are the requirements?

 		
 Data structure

 		
 File handlers

 		
 NetCDF handler

 		
 Grib handler

 		
 Dataset

 		
 Spatial dataset

 		
 Time series dataset

 		
 Data

 		
 Spatial data

 		
 Time series data

 		
 API

 		
 File handler package

 		
 Base file handler

 		
 Grib file handler

 		
 NetCDF file handler

 		
 Opendap file handler

 		
 MetData package

 		
 Dataset module

 		
 Data module

 		
 Grid package

 		
 Grid builder

 		
 Grids

 		
 Data loader package

 		
 Base module

 		
 Open model files

 		
 Open station files

 		
 Utilities package

 		
 Path encoder

 		
 TestCase

 		
 File

 		
 Submodule contents

